The Bose-Chowla argument for Sidon sets

نویسندگان

چکیده

Let h≥2 and let A=(A1,…,Ah) be an h-tuple of sets integers. For nonzero integers c1,…,ch, consider the linear form φ=c1x1+c2x2+⋯+chxh. The representation function RA,φ(n) counts number h-tuples (a1,…,ah)∈A1×⋯×Ah such that φ(a1,…,ah)=n. A is a φ-Sidon system multiplicity g if RA,φ(n)≤g for all n∈Z. every positive integer g, Fφ,g(n) denote largest q there exists withAi⊆[1,n]and|Ai|=q i=1,…,h. It proved that, forms φ,lim supn→∞Fφ,g(n)n1/h<∞ and, φ whose coefficients ci satisfy certain divisibility condition,lim infn→∞Fφ,h!(n)n1/h≥1.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Sidon sets

We give asymptotic sharp estimates for the cardinality of a set of residue classes with the property that the representation function is bounded by a prescribed number. We then use this to obtain an analogous result for sets of integers, answering an old question of Simon Sidon. © 2010 Elsevier Inc. All rights reserved. MSC: 11B

متن کامل

Bounds for generalized Sidon sets

Let Γ be an abelian group and g ≥ h ≥ 2 be integers. A set A ⊂ Γ is a Ch[g]-set if given any set X ⊂ Γ with |X | = h, and any set {k1, . . . , kg } ⊂ Γ , at least one of the translates X + ki is not contained in A. For any g ≥ h ≥ 2, we prove that if A ⊂ {1, 2, . . . , n} is a Ch[g]-set in Z, then |A| ≤ (g − 1)1/hn1−1/h + O(n1/2−1/2h). We show that for any integer n ≥ 1, there is a C3[3]-set A ...

متن کامل

Perfect difference sets constructed from Sidon sets

A set A of positive integers is a perfect difference set if every nonzero integer has an unique representation as the difference of two elements of A. We construct dense perfect difference sets from dense Sidon sets. As a consequence of this new approach we prove that there exists a perfect difference set A such that A(x) ≫ x √ . Also we prove that there exists a perfect difference set A such t...

متن کامل

Arithmetic Characterizations of Sidon Sets

Let G be any discrete Abelian group. We give several arithmetic characterizations of Sidon sets in G. In particular, we show that a set A is a Sidon set iff there is a number 6 > 0 such that any finite subset A of A contains a subset B Q A with |B| > 6\A\ which is quasiindependent, i.e. such that the only relation of the form ]C\eB e x ^ = '̂ with e\ equal to + 1 or 0, is the trivial one. Let G ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 2022

ISSN: ['0022-314X', '1096-1658']

DOI: https://doi.org/10.1016/j.jnt.2021.08.005